Sur certains polynomes orthogonaux. (Q1460454)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Sur certains polynomes orthogonaux. |
scientific article; zbMATH DE number 2598379
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Sur certains polynomes orthogonaux. |
scientific article; zbMATH DE number 2598379 |
Statements
Sur certains polynomes orthogonaux. (English)
0 references
1923
0 references
Einige Eigenschaften des Polynoms \(2n\)-ten Grades \[ P_{2n}(x)= \frac{e^{x^2}}{n!} \frac{d^n}{dx^n}\left(e^{-x^2}x^n\right). \] Es erfüllt die Integralbeziehungen \[ \int_{-\infty}^0 e^{-x^2} x^\nu P_{2n}(x)\, dx = \int_0^\infty e^{-x^2}x^\nu P_{2n} (x)\, dx =0 \quad (\nu=0,1,\ldots,n-1). \] Die erzeugende Funktion lautet: \[ (1 - z)^{-1} e^{\frac{x^2z(z-2)}{(1-z)^2}} = \sum_{n=0}^\infty P_{2n}(x) z^n. \] Schließlich stelit der Verf. \(P_{2n}(x)\) als lineare Kombination der Hermiteschen Polynome dar.
0 references