Sur certains polynomes orthogonaux. (Q1460454)

From MaRDI portal





scientific article; zbMATH DE number 2598379
Language Label Description Also known as
English
Sur certains polynomes orthogonaux.
scientific article; zbMATH DE number 2598379

    Statements

    Sur certains polynomes orthogonaux. (English)
    0 references
    0 references
    1923
    0 references
    Einige Eigenschaften des Polynoms \(2n\)-ten Grades \[ P_{2n}(x)= \frac{e^{x^2}}{n!} \frac{d^n}{dx^n}\left(e^{-x^2}x^n\right). \] Es erfüllt die Integralbeziehungen \[ \int_{-\infty}^0 e^{-x^2} x^\nu P_{2n}(x)\, dx = \int_0^\infty e^{-x^2}x^\nu P_{2n} (x)\, dx =0 \quad (\nu=0,1,\ldots,n-1). \] Die erzeugende Funktion lautet: \[ (1 - z)^{-1} e^{\frac{x^2z(z-2)}{(1-z)^2}} = \sum_{n=0}^\infty P_{2n}(x) z^n. \] Schließlich stelit der Verf. \(P_{2n}(x)\) als lineare Kombination der Hermiteschen Polynome dar.
    0 references

    Identifiers