On the generating function of the series \(\sum F(n)q^n\), where \(F(n)\) is the number of uneven classes of binary quadratics of determinant \(-n\). (Q1461479)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the generating function of the series \(\sum F(n)q^n\), where \(F(n)\) is the number of uneven classes of binary quadratics of determinant \(-n\). |
scientific article; zbMATH DE number 2600780
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the generating function of the series \(\sum F(n)q^n\), where \(F(n)\) is the number of uneven classes of binary quadratics of determinant \(-n\). |
scientific article; zbMATH DE number 2600780 |
Statements
On the generating function of the series \(\sum F(n)q^n\), where \(F(n)\) is the number of uneven classes of binary quadratics of determinant \(-n\). (English)
0 references
1920
0 references
Es bedeute \(F(n)\) die Anzahl der Klassen der ursprünglichen quadratischen Formen erster Art mit der Determinante -- \(n\) und \(\omega\) eine Variable mit positivimaginärem Teil. Für die Funktion \[ \chi(\omega) = \sum_{n=1}^\infty F(n) e^{\pi i \omega} \] wird eine Partialbruchzerlegung hergeleitet, welche das Verhalten von \(\chi(\omega)\) bei Annäherung an die natürliche Grenze \({\mathfrak F }\omega = 0\) zum Ausdruck bringt. (IV 4.)
0 references
Continued fraction representation
0 references