Summation of \(q\)-hypergeometric series. (Q1462042)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Summation of \(q\)-hypergeometric series. |
scientific article; zbMATH DE number 2601514
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Summation of \(q\)-hypergeometric series. |
scientific article; zbMATH DE number 2601514 |
Statements
Summation of \(q\)-hypergeometric series. (English)
0 references
1920
0 references
Den Ausgangspunkt des Verf. bildet die Identität: \[ \frac { [y + z + c + 1]_n [z+x + c + 1]_n [x + y + c + 1]_n [c+1]_n} {[x+c+1]_n[y+c+1]_n [z+c+1]_n [x+y+z+c + 1]_n} \] \[ = 1 + \sum_{r=1}^n \frac {[c+2r]}{[c]} \frac {[c]_r}{[r]!} \frac {[-x]_r[-y]_r[-z]_r[-n]_r}{[x+c+1]_r [y+c+1]_r [z+c+1]_r [n+c +1]_r} \cdot \] \[ \cdot\frac {[x+y+z+2c +n +1]_r}{[-x-y-z-c-n]_r} (-q)^r. \] Hierbei ist \[ [a] = \frac {1-q^a}{1-q}, \quad q \not = 1; \quad [a]_n = [a][a+1]\cdots [a+n-1], \] \[ [n]!=[1][2]\cdots [n]. \] Die Formel, welche hieraus für \(n \to \infty\) entsteht, \(|q| < 1\), ist bereits durch \textit{L. J. Rogers} [Proc. Lond. Math. Soc. 26, 15--32 (1895; JFM 26.0289.01)] angegeben worden. Verf. betrachtet zahlreiche Spezialfälle.
0 references
summation
0 references
q-hypergeometric series.
0 references