A series for \textit{Euler}'s constant \(\gamma\). (Q1470520)

From MaRDI portal





scientific article; zbMATH DE number 2610668
Language Label Description Also known as
English
A series for \textit{Euler}'s constant \(\gamma\).
scientific article; zbMATH DE number 2610668

    Statements

    A series for \textit{Euler}'s constant \(\gamma\). (English)
    0 references
    1916
    0 references
    Beweis der folgender, von \textit{Glaischer} (Messenger 44, 1) vermuteten Formel: \[ \gamma=\lambda_r-(r+1)(r+2)\dots 2r\left\{\frac{S_3}{3(r+3)\dots(2r+2)}+\frac{S_5}{5(r+5)\dots(2r+4)}+\cdots\right\}, \] wo \[ S_n=1^{-n}+2^{-n}+\cdots=\zeta(n) \] ist. Für \(\lambda_r\) wird der Wert \[ \int_0^1 \frac{1+x^{2r-1}}{1+x}dx=1-\frac 12+\frac{1}{3}- \cdots+\frac{1}{2r-1} \] gefunden. Es werden auch andere Formeln von ähnlicher Struktur hergeleitet, und zwar mit Benutzung von Integralen, in welchen die Gamma- bzw. Zetafunktion vorkommt.
    0 references

    Identifiers