On certain infinite series. (Q1474504)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On certain infinite series. |
scientific article; zbMATH DE number 2619383
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On certain infinite series. |
scientific article; zbMATH DE number 2619383 |
Statements
On certain infinite series. (English)
0 references
1915
0 references
Im Anschluß\ an die an S. 1288 besprochene Arbeit werden hier Reihen ausgewertet bzw. miteinander in Zusammenhang gebracht, die mit Thetareihen nahe verwandt sind. Es gilt z. B. die Formel: \[ \begin{multlined} \sum_{k=0}^\infty (-1)^k (2k+1) \left\{ \frac {\alpha e^{(2k+1)^2in\alpha}}{\text{cosh} (2k+1)\alpha} -\frac{\beta e^{-(2k+1)^2in\beta}}{\text{cosh} (2k+1)\beta}\right\}\\ =-\frac 1{2n} \sqrt {\frac \pi{2n}}\varSigma\varSigma (-1)^{\frac {\mu+\nu}2} \left\{ \mu (1+i)\sqrt\alpha -\nu (1- i)\sqrt\beta\right\} \times e^{-(\pi \mu\nu-i\mu^2 \alpha +i\nu^2\beta)/4n} \left(\alpha\beta =\frac{\pi^2}4; \;\mu,\nu =1, 3, 5, \dots \right).\end{multlined} \]
0 references