Note on a set of simultaneous equations. (Q1479691)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Note on a set of simultaneous equations. |
scientific article; zbMATH DE number 2624801
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Note on a set of simultaneous equations. |
scientific article; zbMATH DE number 2624801 |
Statements
Note on a set of simultaneous equations. (English)
0 references
1912
0 references
Lösung der Aufgabe, die \(2n\) Unbekannten \(x_1,\ldots,x_n,y_1,\ldots,y_n\) aus folgendem Gleichungssystem zu finden: \[ \begin{gathered} \begin{matrix}\l&\; \;&\l&\; \;&\l&\; \;&&\; \;&\l& \; \;&\l\\ x_1&+&x_2&+&x_3&+&\cdots&+&x_n&=&a_1,\\ x_1y_1&+&x_2y_2&+&x_3y_3&+&\cdots&+&x_ny_n&=&a_2,\\ x_1y_1^2&+&x_2y_2^2&+&x_3y_3^2&+&\cdots&+&x_ny_n^2&=&a_3,\\ x_1y_1^3&+&x_2y_2^3&+&x_3y_3^3&+&\cdots&+&x_ny_n^3&=&a_4,\\ \hdotsfor{11}\\ \end{matrix} \\ x_1y_1^{2n-1}+x_2y_2^{2n-1}+x_3y_3^{2n-1}+\cdots+x_ny_n^{2n-1}=a_{2n} \end{gathered} \] durch Betrachtung der Funktion \[ \varPhi(\theta)=\frac{x_1}{1-\theta y_1}+ \frac{x_2}{1-\theta y_2}+ \frac{x_3}{1-\theta y_3}+ \cdots+ \frac{x_n}{1-\theta y_n}. \]
0 references