On the partition of positive integers in four classes according to the minimal number of squares needed to their additive composition (Q1491714)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the partition of positive integers in four classes according to the minimal number of squares needed to their additive composition |
scientific article; zbMATH DE number 2640396
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the partition of positive integers in four classes according to the minimal number of squares needed to their additive composition |
scientific article; zbMATH DE number 2640396 |
Statements
On the partition of positive integers in four classes according to the minimal number of squares needed to their additive composition (English)
0 references
1908
0 references
Es seien \({\mathfrak A}(x)\), \({\mathfrak B}(x)\), \({\mathfrak C}(x)\), \({\mathfrak D}(x)\) die Anzahlen der ganzen Zahlen \(\leq x\), die sich als Summe von wenigstens \(1,2,3,4\) Quadraten darstellen lassen. Ganz elementare Überlegungen zeigen, daß \[ \lim_{x\to\infty}\;\frac{{\mathfrak D}(X)}{x}=\tfrac{1}{6},\quad \lim_{x\to\infty}\;\frac{{\mathfrak C}(x)}{x}= \tfrac{5}{6},\quad \lim_{x\to\infty}\;\frac {{\mathfrak A}(x)}{\sqrt{x}}=1. \] Dagegen ist das asymptotische Gesetz der Funktion \({\mathfrak B}(x)\) schwieriger zu entdecken. Dem Verf. gelingt es durch seine Methode (Komplexe Integration über Funktionen von Dirichletschen Reihen), auch diesen Fall zu erledigen. Das Resultat lautet: \[ \lim_{x\to\infty} \frac{\mathfrak B(x)}{\frac{x}{\sqrt{\log x}}}=b>0. \]
0 references
natural integers representable as sums of squares
0 references