Nouvelles applications des paramètres continus à la théorie des formes quadratiques. I: Sur quelques propriétés des formes quadratiques positives parfaites. (Q1495070)

From MaRDI portal





scientific article; zbMATH DE number 2643683
Language Label Description Also known as
English
Nouvelles applications des paramètres continus à la théorie des formes quadratiques. I: Sur quelques propriétés des formes quadratiques positives parfaites.
scientific article; zbMATH DE number 2643683

    Statements

    Nouvelles applications des paramètres continus à la théorie des formes quadratiques. I: Sur quelques propriétés des formes quadratiques positives parfaites. (English)
    0 references
    0 references
    1908
    0 references
    Der Verf. nennt eine positive quadratische Form ``vollkommen'', wenn die folgende Eigenschaft hat: Die Form ist bestimmt durch den Wert ihres Minimums und alle Darstellungen dieses Minimums. Er zeigt, daß diese Formen in Klassen von endlicher Anzahl eingeteilt werden können. Diesen Formen ordnet der Verf. gemäß dem Hermiteschen Verfahren einen Bereich \(R\) zu, der durch lineare Ungleichungen festgelegt wird, und findet so ein vollständiges Repräsentantensystem von Formen der einzelnen Klassen. Er gelangt so zu der Definition der ``reduzierten Formen''. Es gelten die Sätze: Jede positive quadratische Form ist einer reduzierten Form äquivalent. Die Substitution setzt sich aus \(m\) Substitutionen \(S_1,S_2,\ldots,S_m\) zusammen, die nur von der Wahl der reduzierten Formen abhängt. Zwei reduzierte Formen sind nur dann äquivalent, wenn die zugehörige Substitution zu einer Reihe von endlichen Substitutionen gehört. Für den Fall \(n=2\) und 3 gelingt es dem Verf., die Theorie wirklich rechnerisch auszuführen.
    0 references
    perfect positive quadratic forms
    0 references
    reduced forms
    0 references

    Identifiers