Nouvelles applications des paramètres continus à la théorie des formes quadratiques. I: Sur quelques propriétés des formes quadratiques positives parfaites. (Q1495070)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. I: Sur quelques propriétés des formes quadratiques positives parfaites. |
scientific article; zbMATH DE number 2643683
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Nouvelles applications des paramètres continus à la théorie des formes quadratiques. I: Sur quelques propriétés des formes quadratiques positives parfaites. |
scientific article; zbMATH DE number 2643683 |
Statements
Nouvelles applications des paramètres continus à la théorie des formes quadratiques. I: Sur quelques propriétés des formes quadratiques positives parfaites. (English)
0 references
1908
0 references
Der Verf. nennt eine positive quadratische Form ``vollkommen'', wenn die folgende Eigenschaft hat: Die Form ist bestimmt durch den Wert ihres Minimums und alle Darstellungen dieses Minimums. Er zeigt, daß diese Formen in Klassen von endlicher Anzahl eingeteilt werden können. Diesen Formen ordnet der Verf. gemäß dem Hermiteschen Verfahren einen Bereich \(R\) zu, der durch lineare Ungleichungen festgelegt wird, und findet so ein vollständiges Repräsentantensystem von Formen der einzelnen Klassen. Er gelangt so zu der Definition der ``reduzierten Formen''. Es gelten die Sätze: Jede positive quadratische Form ist einer reduzierten Form äquivalent. Die Substitution setzt sich aus \(m\) Substitutionen \(S_1,S_2,\ldots,S_m\) zusammen, die nur von der Wahl der reduzierten Formen abhängt. Zwei reduzierte Formen sind nur dann äquivalent, wenn die zugehörige Substitution zu einer Reihe von endlichen Substitutionen gehört. Für den Fall \(n=2\) und 3 gelingt es dem Verf., die Theorie wirklich rechnerisch auszuführen.
0 references
perfect positive quadratic forms
0 references
reduced forms
0 references