A simple example of the continuous function without derivative. (Q1505543)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A simple example of the continuous function without derivative. |
scientific article; zbMATH DE number 2656764
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A simple example of the continuous function without derivative. |
scientific article; zbMATH DE number 2656764 |
Statements
A simple example of the continuous function without derivative. (English)
0 references
1903
0 references
Setzt man \(t=\sum \frac{c_n}{2^n}\), wo \(c_n=0\) oder 1 ist, und \[ \tau_n=\frac{c_n}{2^n} + \frac{c_{n+1}}{2^{n+1}} + \frac{c_{n+2}}{2^{n+2}} +\cdots,\quad \tau_n'=\frac{1}{2^{n-1}}-\tau_n, \] so wird durch die Gleichung \[ f(t)=\sum_{n=1}^\infty \gamma_n, \] wo \(\gamma_n=\tau_n\) oder \(\tau_n'\) ist, je nachdem \(c_n=0\) oder 1 ist, und wo \(0 \leqq t \leqq 1\) ist, eine Funktion der im Titel der Notiz angegebenen Eigenschaft definiert.
0 references