On the function \(\zeta(s)\) for odd values of the argument. (Q1513507)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the function \(\zeta(s)\) for odd values of the argument. |
scientific article; zbMATH DE number 2665212
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the function \(\zeta(s)\) for odd values of the argument. |
scientific article; zbMATH DE number 2665212 |
Statements
On the function \(\zeta(s)\) for odd values of the argument. (English)
0 references
1900
0 references
Der Verf. betrachtet in diesem Artikel die Riemann'sche Function \(\zeta(s)=\sum 1/m^3\) \((m=1,2,\dots,\infty)\), um zu beweisen, dass man für \(s=4k -1\) ihre numerische Berechnung auf diejenige einer rasch convergirenden Reihe zurückführen kann vermittelst der Formel: \[ \begin{multlined} \sum_{m=1}^\infty \frac1{m^{4k-1}} = \frac{(2\pi)^{4k-1}}{(4k)!}\left[B_{2k} + (-1)^{k-1}\frac12\binom{4k}{2k}B_k^2\right.\\ + \left.\sum_{\nu=1}^{k-1}(-1)^{\nu-1}\binom{4k}{2\nu}B_\nu B_{2k-\nu}\right] - 2\sum_{m=1}^\infty \frac1{m^{4k-1}}\cdot \frac1{e^{2m\pi}-1},\end{multlined} \] wo die \(B_\nu\) die Bernoulli'schen Zahlen bedeuten.
0 references
value of \(\sum_mm^{-4k+1}\)
0 references
Bernoulli number
0 references