Question 13375. (Q1519507)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Question 13375. |
scientific article; zbMATH DE number 2673220
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Question 13375. |
scientific article; zbMATH DE number 2673220 |
Statements
Question 13375. (English)
0 references
1897
0 references
Die aus dem Athenäum-Club vom 18. Decbr. 1896 datirte Aufgabe lautet: Es sei \(F(x)/(1-x)^n=1+2^{n-1}x+3^{n-1}x^2+\cdots\), so ist zu zeigen, dass \(F(x)\) eine symmetrische Function \((n-2)^{\text{ten}}\) Grades in \(x\) ist, deren Coefficienten als Summe die Factorielle von \(n-1\) ergeben, z. B. \[ \frac{1+11x+11x^2+x^3}{(1-x)^5} = 1+16x+81x^2+256x^3+\cdots. \] Lösungen von Knowles und Steggall.
0 references
Special polynomials
0 references