Note on the congruence \(2^{in}\equiv(-)^n(2n)!/(n!)^2\), where \(2n+1\) is a prime. (Q1524763)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Note on the congruence \(2^{in}\equiv(-)^n(2n)!/(n!)^2\), where \(2n+1\) is a prime. |
scientific article; zbMATH DE number 2678354
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Note on the congruence \(2^{in}\equiv(-)^n(2n)!/(n!)^2\), where \(2n+1\) is a prime. |
scientific article; zbMATH DE number 2678354 |
Statements
Note on the congruence \(2^{in}\equiv(-)^n(2n)!/(n!)^2\), where \(2n+1\) is a prime. (English)
0 references
1895
0 references
Die Integrale \[ \int_0^{\frac12 \pi} \cos^{2n+1}v\,dv,\quad \int_0^{\frac12 \pi} \cos\lambda v\,dv \] werden auf verschiedene Weisen ausgewertet, und so Congruenzen obiger Art (bezogen auf die Moduln \(p\), \(p^2\) und \(p^3\)) erhalten.
0 references
congruence
0 references
binomial coeffecient
0 references