Two proofs of the convergence of certain continued fractions (Q1524825)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Two proofs of the convergence of certain continued fractions |
scientific article; zbMATH DE number 2678423
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Two proofs of the convergence of certain continued fractions |
scientific article; zbMATH DE number 2678423 |
Statements
Two proofs of the convergence of certain continued fractions (English)
0 references
1895
0 references
Dass die wohlbekannte unendliche Kettenbruchentwickelung des Integrals \[ \int_a^b \frac{f(y)}{z-y}dy\qquad\left(\begin{aligned} a,b,y\text{ reell}\\ f(y)>0\end{aligned}\right) \] für jedes \(z\) convergirt, welches nicht auf dem Integrationswege liegt, wird einfach bewiesen, und dabei auch die obere Fehlergrenze beim endlichen Bruch bestimmt; einen besonderen Beweis erfordern die Fälle \(a=-\infty\) oder \(b=+\infty\).
0 references
convergence of continued fractions
0 references
Stieltjes integral
0 references