On series derived from binomial coefficients. (Q1524892)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On series derived from binomial coefficients. |
scientific article; zbMATH DE number 2678505
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On series derived from binomial coefficients. |
scientific article; zbMATH DE number 2678505 |
Statements
On series derived from binomial coefficients. (English)
0 references
1895
0 references
Bedeutet \((k_0, k_1,\dots, k_m)_r\) die Reihe \[ \binom r0 k_0 - \binom r1 k_1 + \binom r2 k_2 -\cdots+ (-1)^r \binom rr k_r, \] so ist \[ (v^r,(v+b)^r,\dots,(v+mb)^r)_m = \begin{cases} 0\text{ für }r<m,\\ (-1)^m m!b^m\text{ für }r=m;\end{cases}\tag{I} \] es wird der Wert der Reihe (I) für \(r=m+1\), \(m+2\), \(m+3\), \(m+4\) berechnet; es ist z. B. \[ \begin{multlined} (v^{m+4},(v+b)^{m+4},\dots,(v+mb)^{m+4})_m = (-1)^m m!b^m\{(\sum v)^4 - 3(\sum v)^2\sum v(v+b)\\ + 2\sum v\sum v(v+b)(v+2b) + [\sum v(v+b)]^2 - \sum v(v+b)(v+2b)(v+3b)\},\end{multlined} \] wo unter \(\sum v(v+b)\dots(v+\lambda b)\) die Summe aller Combinationen der Elemente \(v\), \(v+b\), ..., \(v+mb\) zu je \(\lambda+1\) zu verstehen ist. Für \(r=-1\) ist \[ \left(\frac1v,\frac1{v+b},\dots,\frac1{v+mb}\right)_m = \frac{m!b^m}{v(v+b)\dots(v+mb)}; \] durch Differentiation ergiebt sich hieraus \[ \left(\frac1{v^r},\frac1{(v+b)^r},\dots,\frac1{(v+mb)^r}\right)_m = \frac{(-1)^{r-1}m!b^m}{(r-1)!} \frac{d^{r-1}\left(\frac1{v(v+b)\dots(v+mb)}\right)}{dv^{r-1}}. \] Sodann werden die Integrale \[ \int\frac{x^{m+r}dx}{(x+a)(x+a+b)\dots(x+a+mb)}\text{ und }\int\frac{x^{m+r}dx}{(x+a)^{m+1}} \] und Ausdrucke von der Form \[ R_m^r = \left(\frac{a^r}{(a-c)\dots(a-c-nd)}, \frac{(a+d)^r}{(a-c+d)\dots(a-c+(n-1)d)}\right., \] \[ \dots,\left.\frac{(a+md)^r}{(a-c+md)\dots(a-c+(m-n)d)}\right)_m \] berechnet.
0 references
Binomial coefficients
0 references