Some formulas relating to the factorial interpretation of powers. (Q1524901)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Some formulas relating to the factorial interpretation of powers. |
scientific article; zbMATH DE number 2678512
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Some formulas relating to the factorial interpretation of powers. |
scientific article; zbMATH DE number 2678512 |
Statements
Some formulas relating to the factorial interpretation of powers. (English)
0 references
1895
0 references
Der Verfasser geht aus von der Formel \[ (x+y)^{\bar n} = \sum_{r=0}^n \binom nr y(y-rh+1)^{\overline{r-1}}(x+rh)^{\overline{n-r}}, \] worin \(n\) eine ganze positive Zahl und \(h\) eine willkürliche Grösse bezeichnet, und giebt Entwickelungen für die Functionen \[ (x_1 +\cdots+ x_{m-1} + x_m)^{\bar n} \] und \(F(x+y)\), wenn \[ F(x) = A_0x^{\overline n} + A_1x^{\overline{n-1}} +\cdots+ A_{n-1}x + A_n \] ist, ausserdem die beiden Gleichungen: \[ \frac{\Gamma(x_1)\dots\Gamma(x_m)}{\Gamma(x_1+\cdots+x_m)} = \sum \frac{n!}{r_1!\dots r_m!} \frac{\Gamma(x_1+r_1)\dots\Gamma(x_m+r_m)}{\Gamma(x_1+\cdots+x_m+n)}, \] \[ (r_1 +\cdots+ r_m = n); \] \[ B(x,y) = \frac{\int_0^\infty\int_0^\infty e^{-(u+v)}u^{x-1}v^{y-1}\varphi(u+v)dudv}{\int_0^\infty e^{-u}u^{x+y-1}\varphi(u)du}, \] wo \[ \varphi(x) = A_0x^n + A_1x^{n-1} +\cdots+ A_{n-1}x + A_n \] ist.
0 references
Algebraic identities
0 references