Sur un théorème de Kronecker. (Q1525312)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Sur un théorème de Kronecker. |
scientific article; zbMATH DE number 2681964
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Sur un théorème de Kronecker. |
scientific article; zbMATH DE number 2681964 |
Statements
Sur un théorème de Kronecker. (English)
0 references
1893
0 references
Neuer, interessanter Beweis der Kronecker'schen Formel: \[ \lim_{\varrho=0}\left\{-\frac1{\varrho} + \frac1{2\pi} \sum_{m,n}\left( \frac{\sqrt{4ac-b^2}}{am^2+bmn+cn^2}\right)^{1+\varrho}\right\} \] \[ = -2\Gamma'(1) + \log\frac c{\sqrt{4ca-b^2}} + \frac{\pi\sqrt{4ac-b^2}}{6c} \] \[ - 2\log\prod_{n=1}^\infty (1 - e^{2nw_1\pi i})(1 - e^{2nw_2\pi i}), \] in der \(w_1\) und \(w_2\) die beiden Wurzeln der quadratischen Gleichung: \[ a + bw + cw^2 = 0\qquad(a>0,\,c>0,\,4ac-b^2>0) \] bedeuten.
0 references