Some notes on the subject of trigonometric series and Fourier integrals. (Q1527363)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Some notes on the subject of trigonometric series and Fourier integrals. |
scientific article; zbMATH DE number 2681270
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Some notes on the subject of trigonometric series and Fourier integrals. |
scientific article; zbMATH DE number 2681270 |
Statements
Some notes on the subject of trigonometric series and Fourier integrals. (English)
0 references
1893
0 references
I. Aus bekannten trigonometrischen Reihen leitet der Verfasser folgende ab: \[ \begin{aligned} \sum_{m=-\infty}^{+\infty}\frac{\sin\mu(x+m\pi)}{x+m\pi} &= \begin{cases} \frac{\sin(2n+1)x}{\sin x}&\quad(2n<\mu<2n+2)\\ \sin2nx\cot x&\quad(\mu=2n),\end{cases}\\ \sum_{m=-\infty}^{+\infty}\frac{\cos\mu(x+m\pi)}{x+m\pi} &= \begin{cases} \frac{\cos(2n+1)x}{\sin x}&\quad(2n<\mu<2n+2)\\ \cos2nx\cot x&\quad(\mu=2n),\end{cases}\end{aligned} \] und wenn \(p\), \(q\) positive ganze Zahlen bedeuten: \[ \begin{aligned} \sum_{m=-\infty}^{+\infty}\frac{\sin(qm+p)z}{qm+p} &= \frac{\pi}q\sin2n\frac pq\pi \cot\frac pq \pi\qquad\left(z=\frac{2n\pi}q\right),\\ \sum_{m=-\infty}^{+\infty}\frac{\cos(qm+p)z}{qm+p} &= \frac{\pi}q\cos2n\frac pq\pi \cot\frac pq \pi\qquad\left(z=\frac{2n\pi}q\right).\end{aligned} \] Durch wiederholte Integration ergeben sich andere Reihen. II. Die Coefficienten der Reihen \[ \begin{aligned} f(x) &= \frac12a_0 + a_1\cos x + a_2\cos2x +\cdots,\\ \varphi(x) &= b_1\sin x + b_2\sin2x +\cdots\end{aligned} \] lassen sich als Integrale mit unendlichen Intervallen darstellen; z. B. in der Form \[ a_\nu = \frac4{\pi}\int_0^\infty f(x)\cos\nu x\cos\eta x\sin\alpha x \frac{\sin\frac12x}{\sin(n+\frac12)x}\cdot\frac{dx}x \] \[ (n<\alpha\pm\eta<n+1), \] \[ b_\nu = \frac4{\pi}\int_0^\infty \varphi(x)\sin\nu x\cos\eta x\sin\alpha x \frac{\sin\frac12x}{\sin(n+\frac12)x}\cdot\frac{dx}x \] \[ (n<\alpha\pm\eta<n+1), \] für die Grenzwerte \(\alpha\pm\eta=1,2,3,\dots,n\) ... wird: \[ a_\nu = \frac4{\pi}\int_0^\infty f(x)\cos\nu x\tan\frac12x\frac{dx}x,\quad b_\nu = \frac4{\pi}\int_0^\infty \varphi(x)\sin\nu x\tan\frac12x\frac{dx}x. \] III. Es können gewisse mehrfache Integrale durch einfache dargestellt werden; z. B.: \[ \int_0^\infty d\alpha_1 \int_0^\infty d\alpha_2\dots \int_0^\infty d\alpha_n \int_a^b\psi(x)\sin\alpha_1(z+x)\dots\sin\alpha_n(z+x)dx = \int_a^b\psi(x)\frac{dx}{(z+x)^n}, \] \[ \begin{multlined} \int_0^\infty d\alpha \int_0^\infty d\beta \int_a^b \psi(x)dx \prod_{m=1}^m \sin\alpha_mz\cos\alpha_mx \prod_{n=1}^n \cos\beta_nz \sin\beta_nx \\ = (-1)^nz^m \int_a^b\psi(x)x^n\frac{dx}{ (z^2-x^2)^{m+n}},\end{multlined} \] wobei die nur in Bezug auf \(\alpha\) und \(\beta\) angedeuteten Integrationen über sämtliche \(\alpha\) und \(\beta\) auszuführen sind.
0 references
Trigonometric series
0 references