Solution of question 7668. (Q1532815)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Solution of question 7668. |
scientific article; zbMATH DE number 2689298
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Solution of question 7668. |
scientific article; zbMATH DE number 2689298 |
Statements
Solution of question 7668. (English)
0 references
1890
0 references
Ist \(m\) eine beliebige positive ganze Zahl und sind \(a,b,c\) reelle Grössen, so kann die Gleichung \[ a\left\{1+x+\frac {x^2}{2!}+\frac {x^3}{3!}+\cdots+\frac {x^m}{m!}\right\} \] \[ +b\left\{1-x+\frac {x^2}{2!}-\frac {x^3}{3!}+\cdots+(-1)^m\cdot \frac {x^m}{m!}\right\}+c=0 \] nicht mehr als zwei reelle Wurzeln haben.
0 references