Processo geral de Clairaut para achar o valor approximado inecial das raizes da equação do \(3^{\circ}\) grào, no caso irreductivel. (Q1534773)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Processo geral de Clairaut para achar o valor approximado inecial das raizes da equação do \(3^{\circ}\) grào, no caso irreductivel. |
scientific article; zbMATH DE number 2691409
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Processo geral de Clairaut para achar o valor approximado inecial das raizes da equação do \(3^{\circ}\) grào, no caso irreductivel. |
scientific article; zbMATH DE number 2691409 |
Statements
Processo geral de Clairaut para achar o valor approximado inecial das raizes da equação do \(3^{\circ}\) grào, no caso irreductivel. (English)
0 references
1889
0 references
Der Verf. zeigt, dass in dem Falle des Casus irreducibilis eine der Wurzeln der Gleichung \(x^3 - px - q = 0\) \((p>0, q>0)\) zwischen den Zahlen: \[ \tfrac 13\, r\, \sqrt{1 + 3m}. \sqrt{p} \; \text{ und }\; \tfrac 13 \left\{ r + \sqrt{1 + 3m - 3\left( \tfrac{2}{\sqrt{3}} - 1\right)^{3}} \right\} \sqrt{p} \] liegt, wo \(m = \frac{q}{p\sqrt{p}}\) ist; ferner dass die Differenz zwischen diesen beiden Werten kleiner als 0,001856 \dots \(\sqrt{p}\) ist.
0 references