A new proof that a general quadric may be reduced to its canonical form (that is, a linear function of squares) by means of a real orthogonal substitution. (Q1534825)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A new proof that a general quadric may be reduced to its canonical form (that is, a linear function of squares) by means of a real orthogonal substitution. |
scientific article; zbMATH DE number 2691466
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A new proof that a general quadric may be reduced to its canonical form (that is, a linear function of squares) by means of a real orthogonal substitution. |
scientific article; zbMATH DE number 2691466 |
Statements
A new proof that a general quadric may be reduced to its canonical form (that is, a linear function of squares) by means of a real orthogonal substitution. (English)
0 references
1889
0 references
Um die Betrachtung über die Realität der Wurzeln derjenigen Gleichung unnötig zu machen, von welcher die orthogonale Substitution abhängt, die den Uebergang zur kanonischen Form vermittelt, wendet der Verfasser infinitesimale orthogonale Substitutionen an, die er auf einander häuft. Durchgeführt wird der Beweis für zwei, drei und vier Variabeln; die weitere Ausdehnung geschieht durch den Schluss von \(n\) auf \(n + 1\).
0 references