On the product \(1^1.2^2.3^3\ldots n^n\). (Q1554666)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the product \(1^1.2^2.3^3\ldots n^n\). |
scientific article; zbMATH DE number 2712477
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the product \(1^1.2^2.3^3\ldots n^n\). |
scientific article; zbMATH DE number 2712477 |
Statements
On the product \(1^1.2^2.3^3\ldots n^n\). (English)
0 references
1877
0 references
Es wird bewiesen, dass, wenn \(n\) sehr gross, \[ 1^1.2^2.3^3\ldots n^n=A.e^{-\frac 14 n^2} n^{\frac 12 n^2+\frac 12 n+\frac 1{12}} , \] wo \[ A=2^{\frac 1{36}} \pi^{\frac 16}\text{exp.}\frac 13 (-\frac 14 \gamma +\frac 13 S_2-\frac 14 S_3 +\frac 15 S_4-\dotsm ). \] \(\gamma\) ist die Euler'sche Constante \(0,57721\ldots ,\) \[ S_r=1+\frac 1{3^r} +\frac 1{5^r} +\frac 1{7^r}+\dotsm \] exp. \(u\) hat dieselbe Bedeutung, wie \(e^u\). Ferner wird noch bewiesen, dass \[ A=2^{\frac 1{36}}.\pi^{-\frac 16}\text{exp.} \left\{ \frac 13 +\frac 23 \int_0^{\frac 12} \log\varGamma (1+x)dx \right\} . \] Der numerische Werth von \(A\) auf 9 Stellen ist \[ 1,282427130\ldots \]
0 references
Asymptotic formulas of Stirling type
0 references