On the generalization of a formula of Mr. Catalan. (Q1556008)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the generalization of a formula of Mr. Catalan. |
scientific article; zbMATH DE number 2713880
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the generalization of a formula of Mr. Catalan. |
scientific article; zbMATH DE number 2713880 |
Statements
On the generalization of a formula of Mr. Catalan. (English)
0 references
1876
0 references
Herr Catalan hat bemerkt, dass \[ \log 2 = \lim \left( 1 - \tfrac 12 + \tfrac 13 - \tfrac 14 + \cdots - \frac{1}{2n} \right)= \lim \left( \frac{1}{n+1} + \frac{1}{n + 2} + \cdots + \frac{1}{2n}\right) . \] Indem man die Zähler im ersten Gliede durch \(u_1 u_2 u_3 \ldots\) ersetzt und \(v_{x} = u_{x} - u_{2x}\) setzt, leitet man daraus ab \[ u_{\infty} \log 2 = \frac{u_{1}}{1} - \frac{u_2}{2} + \frac{u_3}{3} - \cdots - \left[ \frac{v_1}{1} + \frac{v_2}{2} + \frac{v_3}{3} + \cdots \right]. \] Macht man \(xu_{x} = E(ax)\), wo \(E(x)\) die grösste in \(x\) enthaltene ganze Zahl ist, so ergiebt sich daraus eine sehr merkwürdige Reihe für \((4a \log 2 - \tfrac 16\pi^2)\).
0 references
sum of series
0 references
logarithm
0 references