On the function that stands in the same relation to Bernoulli's numbers that the Gamma-function does to fractionals. (Q1561010)

From MaRDI portal





scientific article; zbMATH DE number 2719003
Language Label Description Also known as
English
On the function that stands in the same relation to Bernoulli's numbers that the Gamma-function does to fractionals.
scientific article; zbMATH DE number 2719003

    Statements

    On the function that stands in the same relation to Bernoulli's numbers that the Gamma-function does to fractionals. (English)
    0 references
    0 references
    1872
    0 references
    Bezeichnet \(B_n\) die \(n^{\text{te}}\) Bernouillische Zahl, so hat man \[ B_n=\frac {2(1\cdot 2\cdot 3\cdots 2n)}{(2\pi)^{2n}}\cdot \left\{1+\frac {1}{2^{2n}}+\frac {1}{3^{2n}}+\cdots\right\}, \] und als Ausdruck für \(B_n\), je nachdem \(n\) ganz oder gebrochen, \[ B_n=\frac {2\varGamma(2n+1)}{(2\pi)^{2n}}\left(1+\frac {1}{2^{2n}}+\frac {1}{3^{2n}}+\cdots\right), \] oder \[ B+n=\frac {2\varGamma(2n+1)}{(2\pi)^n}\cdot \frac{(2^2-1)^n (3^2-1)^n (r^2-1)^n\cdots}{(2^{2n}-1)(3^{2n}-1)(5^{2n}-1)\cdots}, \] wo \(2, 3, 5 \dots\) die Reihe der Primzahlen ist.
    0 references
    Bernoulli numbers
    0 references
    Gamma function
    0 references

    Identifiers