On the function that stands in the same relation to Bernoulli's numbers that the Gamma-function does to fractionals. (Q1561010)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the function that stands in the same relation to Bernoulli's numbers that the Gamma-function does to fractionals. |
scientific article; zbMATH DE number 2719003
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the function that stands in the same relation to Bernoulli's numbers that the Gamma-function does to fractionals. |
scientific article; zbMATH DE number 2719003 |
Statements
On the function that stands in the same relation to Bernoulli's numbers that the Gamma-function does to fractionals. (English)
0 references
1872
0 references
Bezeichnet \(B_n\) die \(n^{\text{te}}\) Bernouillische Zahl, so hat man \[ B_n=\frac {2(1\cdot 2\cdot 3\cdots 2n)}{(2\pi)^{2n}}\cdot \left\{1+\frac {1}{2^{2n}}+\frac {1}{3^{2n}}+\cdots\right\}, \] und als Ausdruck für \(B_n\), je nachdem \(n\) ganz oder gebrochen, \[ B_n=\frac {2\varGamma(2n+1)}{(2\pi)^{2n}}\left(1+\frac {1}{2^{2n}}+\frac {1}{3^{2n}}+\cdots\right), \] oder \[ B+n=\frac {2\varGamma(2n+1)}{(2\pi)^n}\cdot \frac{(2^2-1)^n (3^2-1)^n (r^2-1)^n\cdots}{(2^{2n}-1)(3^{2n}-1)(5^{2n}-1)\cdots}, \] wo \(2, 3, 5 \dots\) die Reihe der Primzahlen ist.
0 references
Bernoulli numbers
0 references
Gamma function
0 references