A new theorem concerning the numerical function \(F(k)\). (Q1564765)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A new theorem concerning the numerical function \(F(k)\). |
scientific article; zbMATH DE number 2721452
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A new theorem concerning the numerical function \(F(k)\). |
scientific article; zbMATH DE number 2721452 |
Statements
A new theorem concerning the numerical function \(F(k)\). (English)
0 references
1869
0 references
Ist \(m\) eine ungrade Zahl, relativ prim zu 5, so hat man für alle Zahlen \(t\), wofür \(10m-25t^2>0\), die Gleichung \[ F(10m)-2\sum{}_t F(10m-25t^2)=2\zeta_1(m), \] wo \(F(k)\) die Anzahl der binären quadratischen Formen der Determinante \(-k\), in denen wenigstens ein äusserer Coefficient ungrade ist, und \(\zeta_1(m)\) die Summe der Divisoren von \(m\) bedeutet.
0 references
Binary quadratic form
0 references
Class number
0 references