A theorem about integers \(\equiv 5\pmod{12}\). (Q1564773)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A theorem about integers \(\equiv 5\pmod{12}\). |
scientific article; zbMATH DE number 2721460
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A theorem about integers \(\equiv 5\pmod{12}\). |
scientific article; zbMATH DE number 2721460 |
Statements
A theorem about integers \(\equiv 5\pmod{12}\). (English)
0 references
1869
0 references
\(\sum_i F(\frac{2m-i^2}{3})= \frac14 \sum(\frac3\delta)d\), when \(m=d\delta\equiv 5\pmod{12}\) und \(i\) über die ungraden Zahlen sich erstreckt, welche \(\sqrt{2m}\) und zu 3 theilerfremd sind, wenn \(F(h)\) die Klassenanzahl quadratischer binärer Formen von der Determinante \(-k\) bezeichnet.
0 references
binary quadratic form
0 references
class number
0 references