Twodimensional anisotropic variational problems (Q1566343)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Twodimensional anisotropic variational problems |
scientific article; zbMATH DE number 1922402
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Twodimensional anisotropic variational problems |
scientific article; zbMATH DE number 1922402 |
Statements
Twodimensional anisotropic variational problems (English)
0 references
2 June 2003
0 references
Consider the variational functional \[ J(u)= \int _{\Omega} f( Du(x)) dx. \] where the integrand \(f \in C^{2}(\mathbb{R}^{2N})\) satisfies: \[ \lambda (1+|X|^{2})^{\frac {s-2} {2} } \leq D^{2}f(X) (Y,Y)\leq \Lambda (1+|X|^{2})^{\frac {q-2}{2 }} \] where \(1<s<q<\infty\). Using a lemma due to Frehse and Seregin, the authors show that the local minimizers of \(J\) have Hölder continuous first derivatives provided that \(q<2s\).
0 references
variational functional
0 references
local minimizers
0 references
Hölder continuous first derivatives
0 references