\(L^p\) continuity of projectors of weighted harmonic Bergman spaces (Q1566956)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \(L^p\) continuity of projectors of weighted harmonic Bergman spaces |
scientific article; zbMATH DE number 1454851
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(L^p\) continuity of projectors of weighted harmonic Bergman spaces |
scientific article; zbMATH DE number 1454851 |
Statements
\(L^p\) continuity of projectors of weighted harmonic Bergman spaces (English)
0 references
8 November 2000
0 references
We study spaces \(A^p(w)\) consisting of harmonic functions in \(B^n\) the unit ball in \(\mathbb{R}^n\) and belonging to \(L^p(w)\), where \(dw(x)=w(1-|x|)dx\) and \(w:(0,1] \to\mathbb{R}^+\) denotes a continuous integrable function. For weights satisfying certain Dini type conditions we construct families of projections of \(L^p(w)\) onto \(A^p(w)\). We use this to get for \(1<p <\infty\) and \({1\over p}+ {1\over p'}=1\), a duality \(A^p(w)^* =A^{p'}(w')\), where \(w'\) depends on \(p\) and \(w\).
0 references
harmonic Bergman spaces
0 references
weights
0 references
0.9310782
0 references
0.93059176
0 references
0.9183218
0 references
0 references
0.9168152
0 references
0 references
0.91359335
0 references
0.9125775
0 references