A note on a result of Singh and Kulkarni (Q1567223)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on a result of Singh and Kulkarni |
scientific article; zbMATH DE number 1455549
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on a result of Singh and Kulkarni |
scientific article; zbMATH DE number 1455549 |
Statements
A note on a result of Singh and Kulkarni (English)
0 references
5 June 2000
0 references
We prove that if \(f\) is a transcendental meromorphic function of finite order and \(\sum_{a\neq \infty}\delta (a,f)+\delta (\infty,f)=2\), then \[ K(f^{(k)}) ={2k(1-\delta (\infty,f))\over 1+k-k\delta (\infty,f)}, \] where \[ K(f^{(k)})= \lim_{r\to \infty}{N (r,1/f^{(k)}) +N(r,f^{(k)}) \over T(r,f^{(k)})}. \] The result improves a result by Singh and Kulkarni.
0 references
Nevanlinna's deficiency
0 references
maximum deficiency sum
0 references
meromorphic function
0 references