Functional law of iterated logarithm for additive functionals of reversible Markov processes (Q1568246)

From MaRDI portal





scientific article; zbMATH DE number 1462505
Language Label Description Also known as
English
Functional law of iterated logarithm for additive functionals of reversible Markov processes
scientific article; zbMATH DE number 1462505

    Statements

    Functional law of iterated logarithm for additive functionals of reversible Markov processes (English)
    0 references
    6 May 2001
    0 references
    The functional law of iterated logarithm or the strong invariance principle of Strassen for an additive functional \((A_t)\) of a reversible Markov process is obtained. The results hold under the minimal condition that \(\exists \lim_{t\to \infty}EA_t^2/t\) in \(R.\) The author uses the forward-backward martingale decomposition technique and limit theorems for martingales. An extension of the functional central limit theorem of Kipnis and Varadhan is obtained.
    0 references
    functional law of iterated logarithm
    0 references
    forward-backward martingale decomposition
    0 references
    reversible Markov processes
    0 references
    0 references
    0 references

    Identifiers