An off-diagonal estimate of Bergman kernels (Q1569015)

From MaRDI portal





scientific article; zbMATH DE number 1463870
Language Label Description Also known as
English
An off-diagonal estimate of Bergman kernels
scientific article; zbMATH DE number 1463870

    Statements

    An off-diagonal estimate of Bergman kernels (English)
    0 references
    22 June 2000
    0 references
    Let \(\mathbb D\) denote the unit disk in \(\mathbb C\) with area measure \(d\Sigma\). For a nonnegative weight \(\omega\) on \(\mathbb D\), \(L^{2}(\mathbb D,\omega)\) denotes the space of complex-valued functions on \(\mathbb D\) that are square integrable with respect to the measure \(\omega d\Sigma\) with norm \(\|f\|_{\omega}\), and \(A^2(\mathbb D,\omega)\) the closure of the analytic polynomials in \(L^2(\mathbb D,\omega)\). The space \(A^2(\mathbb D,\omega)\) is a weighted Bergman space with reproducing kernel \(K_{\omega}\) provided \(|p(z)|\leq C(X)\|p\|_{\omega}\) (\(z\in X\)) for all polynomials \(p\) and compact subsets \(X\) of \(\mathbb D\). In the paper the author proves that if \(\omega\) is logarithmically subharmonic on \(\mathbb D\) and reproducing for the origin, then the kernel \(K_{\omega}\) satisfies the following inequalities: for all \((z,\zeta)\in\mathbb D\times\mathbb D\), \[ \frac 12K_{\omega}(\zeta,\zeta) \frac{(1-|\zeta|^2)^2}{|1-z\overline\zeta|^2} \leq |K_{\omega}(z,\zeta)|\leq \frac 2{|1-z\overline \zeta|^2}. \]
    0 references
    0 references
    nonnegative weight
    0 references
    weighted Bergman space
    0 references
    reproducing kernel
    0 references
    logarithmically subharmonic
    0 references
    0 references

    Identifiers