An off-diagonal estimate of Bergman kernels (Q1569015)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: An off-diagonal estimate of Bergman kernels |
scientific article; zbMATH DE number 1463870
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | An off-diagonal estimate of Bergman kernels |
scientific article; zbMATH DE number 1463870 |
Statements
An off-diagonal estimate of Bergman kernels (English)
0 references
22 June 2000
0 references
Let \(\mathbb D\) denote the unit disk in \(\mathbb C\) with area measure \(d\Sigma\). For a nonnegative weight \(\omega\) on \(\mathbb D\), \(L^{2}(\mathbb D,\omega)\) denotes the space of complex-valued functions on \(\mathbb D\) that are square integrable with respect to the measure \(\omega d\Sigma\) with norm \(\|f\|_{\omega}\), and \(A^2(\mathbb D,\omega)\) the closure of the analytic polynomials in \(L^2(\mathbb D,\omega)\). The space \(A^2(\mathbb D,\omega)\) is a weighted Bergman space with reproducing kernel \(K_{\omega}\) provided \(|p(z)|\leq C(X)\|p\|_{\omega}\) (\(z\in X\)) for all polynomials \(p\) and compact subsets \(X\) of \(\mathbb D\). In the paper the author proves that if \(\omega\) is logarithmically subharmonic on \(\mathbb D\) and reproducing for the origin, then the kernel \(K_{\omega}\) satisfies the following inequalities: for all \((z,\zeta)\in\mathbb D\times\mathbb D\), \[ \frac 12K_{\omega}(\zeta,\zeta) \frac{(1-|\zeta|^2)^2}{|1-z\overline\zeta|^2} \leq |K_{\omega}(z,\zeta)|\leq \frac 2{|1-z\overline \zeta|^2}. \]
0 references
nonnegative weight
0 references
weighted Bergman space
0 references
reproducing kernel
0 references
logarithmically subharmonic
0 references
0.9378903
0 references
0.92590404
0 references
0.92559403
0 references
0.9212393
0 references
0.91792667
0 references
0.91378355
0 references
0.91168606
0 references
0.91115695
0 references