Fracture-mechanical assessment of electrically permeable interface cracks in piezoelectric bimaterials by consideration of various contact zone models (Q1573739)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Fracture-mechanical assessment of electrically permeable interface cracks in piezoelectric bimaterials by consideration of various contact zone models |
scientific article; zbMATH DE number 1485645
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Fracture-mechanical assessment of electrically permeable interface cracks in piezoelectric bimaterials by consideration of various contact zone models |
scientific article; zbMATH DE number 1485645 |
Statements
Fracture-mechanical assessment of electrically permeable interface cracks in piezoelectric bimaterials by consideration of various contact zone models (English)
0 references
10 February 2004
0 references
The authors consider an interface crack between two semi-infinite ceramic half-spaces under remote mixed-mode loading. By assuming that the displacements and electrical potential fields are independent of the coordinate \(x_2\), the stresses and electrical displacements as well as the derivatives of displacement and electrical potential jumps are presented via a sectionally holomorphic vector function analytically continued across mechanically and electrically bonded parts of material interface. By introducing an artificial frictionless contact zone at the right-hand side crack tip, and by assuming electrically permeable crack faces, the problem is reduced to a combined Dirichlet-Riemann boundary value problem. An exact analytical solution of this problem is found and stresses, electrical displacements and derivatives of displacement and electrical potential jumps along the correspondent parts of the material interface are written in a clear analytical form. The stress intensity factors (SIFs) and the energy release rates (ERRs) at the singular points are found, and the electrical intensity factor could be expressed via these values. The contact zone model (in Comninou's sense) is derived as a particular case of the obtained solution. The authors derive a simple transcendental equation and corresponding asymptotic formulas for the determination of real contact zone length. It is shown that only for a remote tension stress the real contact zone length is extremely small, while for an essential shear field it becomes longer and even comparable with the crack length. Another important case of the solution corresponding to zero artificial contact zone length is analyzed as well. This case coincides with a classical approach to interface crack investigation, and leads to a solution possessing oscillating singularities at the crack tip. Associated SIFs, ERRs and mechanical and electrical fields at the crack tip are found in an analytical form which is similar to the corresponding solution for a crack between two isotropic semi-infinite planes. Analytical relationships between fracture-mechanical parameters of various models are found, and recommendations are suggested concerning the application of numerical methods to the problem of interface crack in the discontinuity area of a piezoelectric bimaterial.
0 references
interface crack
0 references
mixed-mode loading
0 references
electrically permeable crack zone
0 references
anisotropic piezoelectric material
0 references
mixed interface conditions
0 references
real contact zone length
0 references
stress intensity factor
0 references
holomorphic vector function
0 references
oscillating singularities
0 references
energy release rates
0 references
Dirichlet-Riemann boundary value problem
0 references
analytical solution
0 references
electrical intensity factor
0 references
piezoelectric bimaterial
0 references