Some sequence spaces defined by \(|\bar N, p_n|\) summability and an Orlicz function (Q1574263)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Some sequence spaces defined by \(|\bar N, p_n|\) summability and an Orlicz function |
scientific article; zbMATH DE number 1488401
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Some sequence spaces defined by \(|\bar N, p_n|\) summability and an Orlicz function |
scientific article; zbMATH DE number 1488401 |
Statements
Some sequence spaces defined by \(|\bar N, p_n|\) summability and an Orlicz function (English)
0 references
29 May 2001
0 references
Let ``\(a\)'' denote the infinite series \(\sum^\infty_{n=0} a_n\). Write \[ \phi_n(a)= {p_n\over P_n P_{n-1}} \sum^n_{k=1} P_{k- 1} a_k\quad\text{for }n\geq 1. \] \[ |\overline N_p|(M,r)= \Biggl\{a= (a_n): \sum_n \Biggl[M\Biggl({|\phi_n(a)|\over \rho}\Biggr)\Biggr]^{Y_{ra}}< \infty\text{ for some }\rho> 0\Biggr\}, \] where \(r= (r_n)\) is a bounded sequence of strictly positive real numbers. The authors prove that \(|\overline N_p|(M,r)\) is a topological linear space. Some inclusion relations between \(|\overline N_p|(M, r)\) spaces are also studied. Here, \(M\) is an Orlicz function.
0 references
\(|\overline N,p_n|\) summability
0 references
sequence spaces
0 references
Orlicz function
0 references
0.94216657
0 references
0 references
0.93730664
0 references
0.93223983
0 references
0.93157995
0 references
0.92956734
0 references
0.9270583
0 references
0.9270583
0 references
0.9256583
0 references