Maximal functions and Hilbert transforms along variable flat curves (Q1574704)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Maximal functions and Hilbert transforms along variable flat curves |
scientific article; zbMATH DE number 1489489
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Maximal functions and Hilbert transforms along variable flat curves |
scientific article; zbMATH DE number 1489489 |
Statements
Maximal functions and Hilbert transforms along variable flat curves (English)
0 references
13 August 2000
0 references
Let \(S(x,y)\) be a suitable real-valued function on \({\mathbb R}^2\) vanishing on the diagonal. For \(f\in C^\infty_0({\mathbb R}^2)\), define \[ {\mathcal M}f(x)=\sup_{0<h<\infty}\frac 1h\left|\int^h_0 f(x_1-t,x_2-S(x_1,x_1-t)) dt\right| \] and \[ {\mathcal H}f(x)=\text{ p. v.}\int^\infty_\infty f(x_1-t,x_2-S(x_1,x_1-t)) \frac {dt}t. \] The authors establish the \(L^p({\mathbb R}^2)\) boundedness for \({\mathcal M}\) with \(1<p\leq\infty\) and for \({\mathcal H}\) with \(1<p<\infty\), via the \(L^p({\mathbb R}^2)\) estimates for certain singular integral operators with oscillatory terms.
0 references
Hilbert transform
0 references
maximal function
0 references
variable curve
0 references
oscillatory singular integral
0 references
0.9965686
0 references
0.9915324
0 references
0.96708554
0 references
0.96568006
0 references
0.96261215
0 references
0.94511545
0 references
0.93858457
0 references
0.93653846
0 references