Contact transformation group classification of nonlinear wave equations (Q1577389)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Contact transformation group classification of nonlinear wave equations |
scientific article; zbMATH DE number 1501421
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Contact transformation group classification of nonlinear wave equations |
scientific article; zbMATH DE number 1501421 |
Statements
Contact transformation group classification of nonlinear wave equations (English)
0 references
12 February 2001
0 references
This paper studies the class of PDE's of the form \(u_{tt}=f(x,u_x)u_{xx}+g(x,u_x)\) for arbitrary functions \(f(x,u_x)\) and \(g(x,u_x)\). The authors reduce the problem of classifying these equations with respect to admitted contact transformation groups to the study of point symmetries of the equivalent system of first-order quasilinear equations \(v_t=a(x,v)w_x\) and \(w_t=b(x,v)v_x\). For this system, the principal Lie algebra admitted by the whole class is two-dimensional. Conditions are given for \(a\) and \(b\) that tell when it is possible to extend the principal Lie algebra of the system.
0 references
problem of classifying
0 references
point symmetries
0 references
0.9400632
0 references
0.9295358
0 references
0 references
0 references
0.91451263
0 references
0.90872145
0 references
0.9083109
0 references
0.9035456
0 references