On new generalizations of Hilbert's inequality (Q1580460)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On new generalizations of Hilbert's inequality |
scientific article; zbMATH DE number 1506518
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On new generalizations of Hilbert's inequality |
scientific article; zbMATH DE number 1506518 |
Statements
On new generalizations of Hilbert's inequality (English)
0 references
2 October 2001
0 references
Let \(\lambda>0\) and let \(f_i : (0,\infty)\rightarrow\mathbb R\) \((i=1,2)\) be functions such that \(0<\int^{\infty}_0 t^{1-\lambda} f_i^2 (t) dt<\infty\). Then \[ \int^{\infty}_0 \int^{\infty}_0 \frac{f_1(x)f_2(y)}{(Ax+By)^{\lambda}} dx dy < (AB)^{-\lambda/2} B\Big(\frac{\lambda}{2}, \frac{\lambda}{2}\Big)\prod^2_{i=1} \Big(\int^{\infty}_0 t^{1-\lambda} f^2_i(t) dt\Big)^{1/2} \tag{1} \] and \[ \int^{\infty}_0 y^{\lambda-1} \Big[\int^{\infty}_0 \frac{f_1(x)}{(Ax+By)^{\lambda}} dx\Big]^2 dy < (AB)^{-\lambda} \Big[B\Big(\frac{\lambda}{2}, \frac{\lambda}{2}\Big)\Big]^2 \int^{\infty}_0 t^{1-\lambda} f^2(t) dt, \tag{2} \] where \(B(\cdot,\cdot)\) is the \(\beta\)-function. Moreover, the inequalities (1) and (2) are equivalent and the constants appearing on their right hand sides are the best possible. This is the main result of the paper. The author also presents its discrete analogue.
0 references
Hilbert type inequalities
0 references
\(\beta\)-function
0 references