A bound for the least Gaussian prime \(\omega\) with \(\alpha<\arg(\omega)<\beta\) (Q1581197)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A bound for the least Gaussian prime \(\omega\) with \(\alpha<\arg(\omega)<\beta\) |
scientific article; zbMATH DE number 1508339
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A bound for the least Gaussian prime \(\omega\) with \(\alpha<\arg(\omega)<\beta\) |
scientific article; zbMATH DE number 1508339 |
Statements
A bound for the least Gaussian prime \(\omega\) with \(\alpha<\arg(\omega)<\beta\) (English)
0 references
5 March 2003
0 references
Let \(\alpha, \beta\) be real numbers satisfying \(\alpha < \beta \leq \alpha + \frac{\pi}{2}\) . The author proves that there exists a Gaussian prime \(\omega\) with \(\alpha < \arg (\omega) < \beta\) such that \[ \omega \overline{\omega}< \exp \left( \frac{A}{\sqrt{\beta - \alpha}} \left( \log \frac{1}{\beta - \alpha} \right)^{3/2} \right), \] where \(A\) is a positive absolute constant. Under the assumption of the Generalized Riemann Hypothesis this estimate can be improved to \[ \omega \overline{\omega}< \frac{A}{(\beta - \alpha)^2} \log^4 \frac{1}{\beta - \alpha} . \]
0 references
Gaussian prime
0 references
0 references
0.85321003
0 references
0.8520616
0 references
0.85137475
0 references
0.8512365
0 references
0.8497137
0 references
0.84902894
0 references
0.8490145
0 references
0.8471108
0 references