When do Toeplitz and Hankel operators commute? (Q1583711)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: When do Toeplitz and Hankel operators commute? |
scientific article; zbMATH DE number 1523221
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | When do Toeplitz and Hankel operators commute? |
scientific article; zbMATH DE number 1523221 |
Statements
When do Toeplitz and Hankel operators commute? (English)
0 references
21 May 2001
0 references
The author shows that non-trivial Toeplitz (\(T_\psi\)) and Hankel (\(H_\varphi\)) operators commute if and only if the symbol \(\varphi\) of Hankel operator is \(z\psi (z)\), where \(\psi(z)=a\xi (z)+b\), \(a\neq 0\) and \(\xi (z)\) is the characteristic function of certain ``anti-symmetric'' sets of the unit circle.
0 references
Toeplitz operator
0 references
Hankel operator
0 references
symbol
0 references
0.85089785
0 references
0.85065293
0 references
0.8421205
0 references
0.8411216
0 references
0.8411216
0 references
0.8407878
0 references
0.83861315
0 references