Regular subdivision in \(\mathbb{Z} [\frac{1+\sqrt{5}}{2}]\) (Q1584479)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Regular subdivision in \(\mathbb{Z} [\frac{1+\sqrt{5}}{2}]\) |
scientific article; zbMATH DE number 1525072
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Regular subdivision in \(\mathbb{Z} [\frac{1+\sqrt{5}}{2}]\) |
scientific article; zbMATH DE number 1525072 |
Statements
Regular subdivision in \(\mathbb{Z} [\frac{1+\sqrt{5}}{2}]\) (English)
0 references
5 November 2000
0 references
The author shows how to construct ``regular'' subdivisions for the ring \(\mathbb{Z}[ \frac{1+\sqrt{5}}{2} ]\). He relates these subdivisions to the Fibonacci tiling and to the two substitutions \(L\to LS\), \(S\to L\) and \(L\to SL\), \(S\to L\) (used inter alia to produce one-dimensional quasi-crystals in the literature in physics). A more general result for general algebraic rings is announced.
0 references
subdivisions in algebraic rings
0 references
Fibonacci tiling
0 references
substitutions
0 references
quasi-crystals
0 references
0.81747854
0 references
0.8148996
0 references
0.8108432
0 references
0.8052112
0 references