Hörmander multipliers on the Heisenberg group (Q1585700)

From MaRDI portal





scientific article; zbMATH DE number 1529494
Language Label Description Also known as
English
Hörmander multipliers on the Heisenberg group
scientific article; zbMATH DE number 1529494

    Statements

    Hörmander multipliers on the Heisenberg group (English)
    0 references
    14 November 2000
    0 references
    Let \(\mathbb{H}_n\) be the Heisenberg group of dimension \(2n+1\). Let \({\mathcal L}_1, \dots, {\mathcal L}_n\) be the partial sub-Laplacians on \(\mathbb{H}_n\) and \(T\) the central element of the Lie algebra of \(\mathbb{H}_n\). For \(0<p_0\leq 1\), the author proves that the operator \(m({\mathcal L}_1, \dots, {\mathcal L}_n, -iT)\) is bounded on the Hardy spaces \(H^p(\mathbb{H}_n)\), \(p_0\leq p<\infty\), if the function \(m\) satisfies a Hörmander type condition on \(\mathbb{R}^{n+1}\) which depends on \(p_0\). Let \({\mathcal L}={\mathcal L}_1 +\cdots+ {\mathcal L}_n\) be the Kohn Laplacian on \(\mathbb{H}_n\). The author also obtains analogous results for the operators \(m({\mathcal L}, -iT)\) and \(m({\mathcal L}_1, \dots, {\mathcal L}_n)\), where the function \(m\) satisfies analogous Hörmander type conditions.
    0 references
    Hörmander multiplier
    0 references
    Heisenberg group
    0 references
    Hardy spaces
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references