Some inequalities for multivariate characteristic functions (Q1585962)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Some inequalities for multivariate characteristic functions |
scientific article; zbMATH DE number 1529965
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Some inequalities for multivariate characteristic functions |
scientific article; zbMATH DE number 1529965 |
Statements
Some inequalities for multivariate characteristic functions (English)
0 references
2 October 2001
0 references
Some new lower and upper bounds are obtained for characteristic functions (cf's) of multivariate distributions that can be useful in limit theorems and stability problems. Many are multivariate extensions of results reported by the first author [J. Math. Sci., New York 84, No. 3, 1179-1189 (1997; Zbl 0915.60027)]. Notation: \({\mathbf X}\) is a random vector (rv) in \(R^m\), \(m\geq 1\), with distribution function (df) \(F({\mathbf x})\), density \(p({\mathbf x})\), cf \(f({\mathbf t})\) and covariance matrix \(\Sigma\). \(\text{R} f({\mathbf t})\) is the real part of \(f({\mathbf t})\). \(\langle{\mathbf x}, {\mathbf y}\rangle\) is the scalar product of vectors \({\mathbf x}\) and \({\mathbf y}\); \(\|{\mathbf x}\|=\sqrt{(\langle {\mathbf x},{\mathbf x}\rangle)}\). \(h(z)=2(1-\cos z)/z^2\) and \(k(z)=(2/z^2) \log(2/(2-z^2))\). Theorem 1. For \(u>0\) and any \(a>m/\sqrt \pi:\int_{\|{\mathbf x}\|\geq a/u}dF(x)\leq c(a)/u^m \int_{ \|{\mathbf t}\|\leq u}[1-Rf ({\mathbf t})] d{\mathbf t}\). Here \(c(a)= \Gamma(m/2 +1)/ \pi^{m/2}[1-m/a \sqrt\pi]\). Theorem 2. If \(\|{\mathbf X} \|\leq c< \infty\) and \(\sup p({\mathbf x})\leq a<\infty\), then \(|f({\mathbf t}) |\leq (\sin d)/d\) for \(\|{\mathbf t}\|\leq\pi/2c\) and \(|f({\mathbf t}) |\leq (\sin D)/D\) for \(\|{\mathbf t}\|>\pi/2c\). Here \(b=\pi^{(m-1)/2} c^{m-1}a/ \Gamma((m+1)/2)\), \(d=\|{\mathbf t}\|/2b\), \(D=\pi/4bc\). Theorem 3. If \(\|{\mathbf X}\|\leq c\) and \(a\in[0,\pi/4]\), then \(|f({\mathbf t}) |\leq 1-h(a){\mathbf t}\Sigma{\mathbf t}'/2\) for \(\|{\mathbf t}\|\leq a/c\). Theorem 4. \(|f({\mathbf t})|\geq 1-{\mathbf t}\Sigma {\mathbf t}'/2\) for all \({\mathbf t}\in R^m\). Theorem 5. \(|f({\mathbf t})|\geq\exp \{-k(a) {\mathbf t}\Sigma {\mathbf t}'/2\}\) for any \(a\in(0,\sqrt 2)\) and all \({\mathbf t}\in R^m\) such that \({\mathbf t}\Sigma {\mathbf t}'\leq a^2\). Theorem 6. Let \(g(z)\), \(z\geq 0\), be a non-negative, unbounded, increasing function. Let \(a\) and \(d\) be finite real numbers. If \(\sup p({\mathbf x})\leq a\), \(Eg(\|{\mathbf X}\|)=d\) and \(\delta\in (0,1]\), then \(|f({\mathbf t})\leq 1-(1-\delta)^2 \|{\mathbf t} \|^2/3 \pi^2b^2\) for \(\|{\mathbf t}\|\leq\pi/2c\) and \(|f({\mathbf t}) |\leq 1-(1- \delta)^3/ 12b^2c^2\) for \(\|{\mathbf t}\|> \pi/2c\). Here \(c= g^{-1}(d/ \delta)\) and \(b\) is as in Theorem 2. Theorem 7. If \(\sup p({\mathbf x})\leq a<\infty\), then \(|f({\mathbf t})|\leq 1-c\|{\mathbf t}\|^2\) for \(\sqrt{{\mathbf t}\Sigma{\mathbf t}'}\leq\pi/4\) and \(|f({\mathbf t})|\leq 1-c\pi^2 \|{\mathbf t}\|^2/ 16({\mathbf t}\Sigma {\mathbf t}')\) for \(\sqrt{{\mathbf t}\Sigma{\mathbf t}'}> \pi/4\). Here \(\sigma^2= E\|{\mathbf X}\|^2\) and \(c=9[ \Gamma((m+1)/2)]^2/2^{m+8} \pi^{m+1}a^2(\sigma^2)^{m-1}\).
0 references
lower and upper bounds
0 references
multivariate distributions
0 references
limit theorems
0 references
stability problems
0 references