Harmonic Bergman functions on the unit ball in \(\mathbb R^n\) (Q1586328)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Harmonic Bergman functions on the unit ball in \(\mathbb R^n\) |
scientific article; zbMATH DE number 1528591
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Harmonic Bergman functions on the unit ball in \(\mathbb R^n\) |
scientific article; zbMATH DE number 1528591 |
Statements
Harmonic Bergman functions on the unit ball in \(\mathbb R^n\) (English)
0 references
13 November 2000
0 references
The authors study harmonic Bergman functions on the unit ball \(B\) in \(\mathbb R^n\) and show that for the Bergman kernel \(K_\alpha(x,y)\) of the orthogonal projection of \(L^{2,\alpha-1}\) onto the harmonic Bergman space \(\ell^{2,\alpha-1}\) one has the estimation \[ |K_\alpha(x,y)|= O(|x-y|^{-n+1-\alpha}) \] for \(x\in B\) and \( y\in \partial B\). Also, they calculate the duals of \({\ell}^{p,\alpha-1}\) for all \(p>0\) and \(\alpha>0\).
0 references
harmonic Bergman functions
0 references
Bergman kernel
0 references
harmonic Blach space
0 references