Asymptotic formulae and divisor problems (Q1586358)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Asymptotic formulae and divisor problems |
scientific article; zbMATH DE number 1528657
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Asymptotic formulae and divisor problems |
scientific article; zbMATH DE number 1528657 |
Statements
Asymptotic formulae and divisor problems (English)
0 references
13 November 2000
0 references
As a generalization of the usual divisor function \(\tau(n)\) let a multiplicative function \(\tau_z(n,\theta)\) be defined by \[ \zeta^z (s) \zeta^z (s-i \vartheta)=\sum^\infty_{n=1} \tau_z(n,\vartheta)n^{-3},\quad\sigma>1 \] where \(z\) is a complex number, \(\theta\) a real number, \(\zeta\) the Riemann zeta-function, and \(s=\sigma+it\). The authors investigate the asymptotic behaviour of the summatory functions of \(\tau_z(n,\theta)\) and related functions.
0 references
divisor problem
0 references
asymptotic formulas
0 references
multiplicative function
0 references