Generalizations of Hardy's integral inequalities (Q1587810)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Generalizations of Hardy's integral inequalities |
scientific article; zbMATH DE number 1538442
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Generalizations of Hardy's integral inequalities |
scientific article; zbMATH DE number 1538442 |
Statements
Generalizations of Hardy's integral inequalities (English)
0 references
23 October 2001
0 references
The authors study a question whether the constant factors involved in the following Hardy-type inequalities are the best possible: \[ \begin{aligned} \int^b_a \Big( x^{-1} \int^x_a f(t) dt\Big)^p dx &\leq q^p \Big[ 1-\Big(\frac{a}{b}\Big)^{1/q}\Big]^p \int^b_a f^p(t) dt,\\ \int^{\infty}_a \Big( x^{-1} \int^x_a f(t) dt\Big)^p dx &\leq q^p \int^{\infty}_a [1-\theta_p(t)] f^p(t) dt,\\ \int^b_0\Big(x^{-1} \int^x_0 f(t)dt\Big)^p dx &\leq q^p\int^b_0 \Big[ 1- \Big(\frac{t}{b}\Big)^{1/q}\Big] f^p(t) dt. \end{aligned} \] Here \(0<a<b<\infty\), \(p\in (1,\infty)\), \(q=p /(p-1)\) and \(\theta_p\) is a convenient function such that \(0 < \theta_p (t) < 1\) for all \(t\in (a,\infty)\). To answer this question, the authors establish some generalizations of the inequalities mentioned above.
0 references
Hardy-type inequalities
0 references
best possible constants
0 references