Oscillation property of the spectrum of multipoint boundary value problems (Q1589037)

From MaRDI portal





scientific article; zbMATH DE number 1541470
Language Label Description Also known as
English
Oscillation property of the spectrum of multipoint boundary value problems
scientific article; zbMATH DE number 1541470

    Statements

    Oscillation property of the spectrum of multipoint boundary value problems (English)
    0 references
    0 references
    7 March 2001
    0 references
    The author studies the eigenvalue problem for equations \[ Ly \equiv y^{(n)}+\sum_{k=0}^{n-1} p_{k}(\cdot)y^{(k)}=\lambda q(\cdot)y \] under the conditions \[ l_j y \equiv \sum_{k=1}^n b_{jk}y^{(n-k)} (c_j) = 0, \quad j=1,\dots,r, \] \[ y^{(\nu_i)}(a_i) = 0, \quad \nu_i = 0,\dots,k_i-1, \quad i=1,\dots,m, \] with \(1<r<n\), \(k_1+\cdots+k_m = n-r\), \(a \leq c_1 \leq\cdots \leq c_r \leq b\), \(a\leq a_1 \leq\cdots\leq a_m \leq b\). Under some conditions on the data of the considered problem, an oscillation property of the spectrum is proved. The obtained result generalizes the author's earlier results to the more general case of multipoint boundary value problems.
    0 references
    oscillation property
    0 references
    eigenvalue
    0 references
    spectrum
    0 references
    multipoint boundary value problem
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references