The Cauchy problem for an axially symmetric equation and the Schwarz potential conjecture for the torus (Q1589703)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The Cauchy problem for an axially symmetric equation and the Schwarz potential conjecture for the torus |
scientific article; zbMATH DE number 1542455
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The Cauchy problem for an axially symmetric equation and the Schwarz potential conjecture for the torus |
scientific article; zbMATH DE number 1542455 |
Statements
The Cauchy problem for an axially symmetric equation and the Schwarz potential conjecture for the torus (English)
0 references
6 August 2001
0 references
The paper deals with the Cauchy problem for the axially symmetric equation \(\partial_x^2 u+\partial_y^2 u +(k/x) \partial_x u=0\) with entire Cauchy data given on an initial plane or on an initial sphere. The problem is solved and possible singularities are discussed.
0 references
Cauchy problem
0 references
holomorphic partial differential equation
0 references
singularity
0 references
0 references
0 references
0 references
0 references