A subordination theorem for spirallike functions (Q1590695)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A subordination theorem for spirallike functions |
scientific article; zbMATH DE number 1547937
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A subordination theorem for spirallike functions |
scientific article; zbMATH DE number 1547937 |
Statements
A subordination theorem for spirallike functions (English)
0 references
21 December 2000
0 references
Let \(G(\lambda)\) denote the class of functions \(f(z)= z+\sum^\infty_{n=2} a_nz^n\), analytic in the unit disk \(E\) and satisfying \[ \sum^\infty_{n=2} [1+(n- 1)\text{sec }\lambda]|a_n|\leq 1,\;\Biggl(|\lambda|< {\pi\over 2}\Biggr). \] Theorem: Let \(f\in G(\lambda)\), \(g\) is analytic in \(E\), \(g(0)= g'(0)- 1= 0\) and \(g(E)\) is convex, \(f*g\) means Hadamard product. Then \({1+ \text{sec }\lambda\over 2(2+\text{sec }\lambda)}(f* g)(z)\) is subordinate to \(g(z)\) in \(E\). The factor \({1+ \text{sec }\lambda\over 2(2+ \text{sec }\lambda)}\) is best possible.
0 references
satisfying
0 references
subordinate
0 references