On the sum of digits functions for number systems with negative bases (Q1591451)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the sum of digits functions for number systems with negative bases |
scientific article; zbMATH DE number 1546949
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the sum of digits functions for number systems with negative bases |
scientific article; zbMATH DE number 1546949 |
Statements
On the sum of digits functions for number systems with negative bases (English)
0 references
7 April 2002
0 references
Let \(q\geq 2\) be a fixed integer. Any integer \(n\) can be represented uniquely in the negative base \(-q\), i.e. in the form \(n=c_0+c_1(-q)+\cdots +c_h(-q)^h\), where \(c_i\in \{0,1,\dots ,q-1\}\). The authors investigate the sum of digits function \(\nu_{- q}(n)=c_0+c_1+\cdots +c_h\). They show, among other things, that \[ \sum_{n<N} (\nu_{-q}(n)-\nu_{-q}(-n)) =NG(\log_{q^2} N) +O(\log^2 N), \] where \(G(x)\) is a continuous, periodic, nowhere differentiable function, and obtain a Gaussian asymptotic distribution result for \(\nu_{-q}(n)-\nu_{-q}(-n)\). The proofs use automata and analytic methods.
0 references
digital expansion
0 references
sum of digits
0 references
finite automata
0 references
0.8952233
0 references
0.89376616
0 references
0 references
0.8729501
0 references
0.8686283
0 references
0.86372125
0 references
0.8626164
0 references
0 references