Multiple solutions for a semilinear boundary value problem: A computational multiplicity proof (Q1593769)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Multiple solutions for a semilinear boundary value problem: A computational multiplicity proof |
scientific article; zbMATH DE number 1556940
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Multiple solutions for a semilinear boundary value problem: A computational multiplicity proof |
scientific article; zbMATH DE number 1556940 |
Statements
Multiple solutions for a semilinear boundary value problem: A computational multiplicity proof (English)
0 references
27 November 2001
0 references
In the paper there is with unstandard advance proved the following theorem: Let \(\Omega= (0,1)\times(0,1)\). The boundary value problem \[ \Delta u= u^2= s\sin\pi x\cdot\sin\pi y\quad\text{in }\Omega, \] \[ u|_{\partial\Omega}= 0, \] has at least four solutions for \(s= 800\).
0 references
nonlinear problem
0 references
multiple solution
0 references
fixed point
0 references
0 references
0 references
0 references
0 references
0 references
0.98976994
0 references
0.93929476
0 references
0.9316341
0 references
0.9270264
0 references
0.92429054
0 references
0.92316127
0 references