Ichimura-Sumida criterion for Iwasawa \(\lambda\)-invariants (Q1594775)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Ichimura-Sumida criterion for Iwasawa \(\lambda\)-invariants |
scientific article; zbMATH DE number 1561769
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Ichimura-Sumida criterion for Iwasawa \(\lambda\)-invariants |
scientific article; zbMATH DE number 1561769 |
Statements
Ichimura-Sumida criterion for Iwasawa \(\lambda\)-invariants (English)
0 references
7 February 2001
0 references
Let \(p\) be an odd prime number and \(k\) a cyclic extension of \({\mathbb Q}\) of degree \(p\). The main theorem gives a criterion for the vanishing of the Iwasawa invariant \(\lambda\) for the cyclotomic \({\mathbb Z}_p\) extension of \(k\) in terms of cyclotomic units in the case where \(p\) splits completely in \(k/{\mathbb Q}\). The authors conclude the note by numerical examples. In particular, they show the vanishing of \(\lambda\) for \textbf{all} cyclic cubic fields of prime conductor less than 10.000.
0 references
vanishing of Iwasawa invariants
0 references
cyclotomic \({\mathbb Z}_p\) extension
0 references
cyclic cubic fields
0 references
0.87649953
0 references
0.8762164
0 references