The integral mean of the discrepancy of the sequence \((n\alpha)\) (Q1596341)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The integral mean of the discrepancy of the sequence \((n\alpha)\) |
scientific article; zbMATH DE number 1562963
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The integral mean of the discrepancy of the sequence \((n\alpha)\) |
scientific article; zbMATH DE number 1562963 |
Statements
The integral mean of the discrepancy of the sequence \((n\alpha)\) (English)
0 references
22 November 2001
0 references
Let \(D_N(\alpha)\) be the discrepancy of the sequence \((n\alpha)_{n=1}^N\) modulo 1, where \(\alpha\) is a given real number. Then it is proved that \[ \lim_{N\to\infty} \frac{1} {\log^2 N} \int_0^1 D_N(\alpha) d\alpha= \frac{1}{\pi^2}. \]
0 references
discrepancy
0 references