The integral mean of the discrepancy of the sequence \((n\alpha)\) (Q1596341)

From MaRDI portal





scientific article; zbMATH DE number 1562963
Language Label Description Also known as
English
The integral mean of the discrepancy of the sequence \((n\alpha)\)
scientific article; zbMATH DE number 1562963

    Statements

    The integral mean of the discrepancy of the sequence \((n\alpha)\) (English)
    0 references
    22 November 2001
    0 references
    Let \(D_N(\alpha)\) be the discrepancy of the sequence \((n\alpha)_{n=1}^N\) modulo 1, where \(\alpha\) is a given real number. Then it is proved that \[ \lim_{N\to\infty} \frac{1} {\log^2 N} \int_0^1 D_N(\alpha) d\alpha= \frac{1}{\pi^2}. \]
    0 references
    discrepancy
    0 references

    Identifiers